

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 # Chlorie’s utilities library

Chlorie’s collection of header-only small utilities. Requires C++20, will modularize as soon as major compilers & cmake supports standard modules.

Contents

Detailed compilable examples are in the examples subdirectory, turn on CMake option CLU_BUILD_EXAMPLES to build the examples.

All API in this library lies in namespace clu. The nested namespace clu::detail is for implementation details.

Miscellaneous Utilities

	buffer.h: Buffer types for converting trivially copyable arrays into sized buffers.

	c_str_view.h: A view type for a null-terminated C-style string.

	concepts.h: Common concepts like similar_to (same_as with remove_cvref) and so on.

	debug.h: Provides utilities for debugging purpose. Currently contains a verbose class that logs all of its special member function call into stdout.

	enumerate.h: Python-like enumerate function template for using range-for loops to iterate containers together with indices.

	file.h: Provides file utilities. Currently only contains a function template for reading the whole content of a binary file into a std::vector.

	fixed_string.h: A fixed-size string suitable for NTTP usage.

	flat_forest.h: An STL-like implementation for the forest data structure. Nodes are saved mostly contiguously inside memory. Provides fast structure modification methods (e.g. detach a branch and attach it elsewhere).

	function_ref.h: Non-owning type erasure class for invocables with a specific signature.

	function_traits.h: Type traits for (abominable) function types and member function pointer types.

	hash.h: Simple constexpr string hashing function. Currently contains the fnv1a algorithm (constexpr enabled) and a hash combiner.

	indices.h: Provides better syntax for writing normal indexed for loops.

	optional_ref.h: Optional reference type. Has rebind assignment semantics.

	outcome.h: Provides a wrapper around a value/null/exception union.

	overload.h: Helper class template for creating overloads of multiple lambdas, useful for visiting variants.

	partial.h: A simple library implementation to simulate the “pizza operator (operator |>)”. Turns nested function calls to linear pipelines.

	polymorphic_visit.h: Provides a function template for achieving std::visit like functionality on a closed set of inheritance tree.

	reference.h: Utilities for dealing with std::reference_wrapper.

	scope.h: RAII wrapper for manual object lifetime management.

	string_utils.h: Some string utility functions.

	take.h: Provides utility function template for moving an object and reset it to the default constructed state.

	type_erasure.h: Dynamic polymorphism with value semantics. Inspired by Folly.Poly and Dyno.

	
	type_traits.h: Useful type traits.
	
	copy_cvref<From, To>: Copies cv-qualifiers and references from the first type to the second. E.g. copy_cvref<const int&, float>::type gets const float&.

	all_same<Ts…>: Checks whether a list of types are all the same.

	vector_utils.h: Contains a helper function template for constructing a vector with given list of elements, circumventing the non-movable problem of std::initializer_list.

Coroutine related

APIs in this category lies under the clu/coroutine directory.

	async_mutex.h: An async mutex implementation. When a coroutine holding the mutex releases the lock, if there’re more waiters on the mutex, the lock holder will resume the first waiter coroutine in the unlock function.

	cancellable_task.h: A task type similar to task but supports cancellation. Cancelling a cancellable_task would cancel any cancellable_awaitable that the task is awaiting on.

	concepts.h: Concepts for `awaiter`s, `awaitable`s, awaitable type traits, and more.

	coroutine_scope.h: A scope for launching coroutines in normal non-coroutine context.

	fmap.h: Create an awaitable that awaits an awaitable and transforms its result.

	generator.h: A coroutine generator type which supports `co_yield`ing values in the coroutine body. `generator`s are also `std::input_range`s.

	oneway_task.h: An coroutine type supporting co_await`ing in its body, `std::terminate`s if an uncaught exception escapes the coroutine body. The oneway-ness of this type means that this type is not an `awaitable. This kind of coroutine also starts eagerly without suspending on calling them. This type is helpful for implementing other coroutine types, but not suitable for normal uses. For normal structural concurrent co_await uses, please use task.

	race.h: Concurrently wait multiple cancellable awaitables. Once any awaitable finishes waiting (by returning or throwing exceptions) the other awaitables will be cancelled, and the result (or exception) of the winner awaitable will be returned.

	sync_wait.h: Synchronously waits for an awaitable to finish running. Can be used to start coroutines in normal functions with a blocking manner.

	task.h: A coroutine type for co_await`ing `awaitable`s in the coroutine body. This task type is lazy, meaning that the coroutine body will not start just by constructing a `task, instead you should co_await a task for that. This is an important building block of post-C++20 structural concurrency.

	unique_coroutine_handle.h: A unique ownership std::coroutine_handle<T> wrapper.

	when_all.h: Constructs an awaitable for awaiting multiple awaitables concurrently. The results are collected into std::tuple or std::vector. If any of the awaitables throws, the exception is propagated out. If you want to get the results of all awaitables even when some of them throws, or want to collect all the exceptions, please use when_all_ready.

	when_all_ready.h: Constructs an awaitable for awaiting multiple awaitables concurrently. The results and potential exceptions are collected into std::tuple or std::vector of `outcome`s.

Meta-programming related

APIs in this category lies under the clu/meta directory with namespace clu::meta.

	
	algorithm.h: Algorithms for dealing with type lists.
	
	reduce<List, BinaryFunc, Init>: Reduce a list given an initial value and a binary function.

	transform<List, UnaryFunc>: Transform every type in a list with a function.

	all_of<List, Pred>, any_of<List, Pred>, none_of<List, Pred>: Check if all/any/none of the types in a list satisfy a predicate.

	count<List, T>, count_if<List, Pred>: Count the types in a list that is the same to a given type / satisfy a predicate.

	
	functional.h: Provides some useful meta-functions. Higher-order meta-functions are “called” with the nested alias template call.
	
	integral_constant: Easier way to create a std::integral_constant.

	is_integral_constant: Checks if a type is a std::integral_constant.

	bind_front<Func, Ts…>, bind_back<Func, Ts…>: Binds parameters to a meta-function.

	plus, minus, multiplies, divides, modulus, negate: Arithmetic operators.

	equal_to, not_equal_to, less, greater, less_equal, greater_equal: Comparison operators.

	logical_and, logical_or, logical_not: Logical operators.

	bit_and, bit_or, bit_xor, bit_not: Bit-wise operators.

	not_fn<UnaryFunc>: Inverts a predicate.

	
	type_list.h: A “type list” struct template for “saving” a list of types.
	
	type_list<Ts…>: The type list type.

	indexed_type<I, T>: A “pair” of an index (size_t) and a type.

	list_size<L>: A meta-function for getting the size of a type list.

	to_type_list<S>: Convert a std::integer_sequence into a type_list.

	to_integer_sequence<L>: Convert a type_list into a std::integer_sequence.

	extract_list<T>: For extracting type parameters from a type template, e.g. extract_list<std::tuple<int, float>>::type gets you type_list<int, float>.

	apply<L, Templ>: Applies a type template back to a type list, e.g. apply<type_list<int, float>, std::tuple>::type gets back std::tuple<int, float>.

	front<L>: Gets the first type in a type list.

	tail<L>: Gets all the types except for the first one in a type list.

	concatenate<L, M>: Concatenates two type lists.

	find<L, T>: This meta-function finds the index of the first occurrence of a type in a type list. If the type is not in the list, it returns npos.

	at<L, N>: Gets a type from a type list given an index.

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/plus.png

_static/file.png

_static/minus.png

